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Introduction
The growing prevalence of chronic kidney disease (CKD) and its economic burden is a global health problem. 
There is an unmet need for better understanding of the pathophysiology of glomerular diseases, which represent 
a significant cause of CKD, and the underlying mechanisms of disease progression (1, 2). The glomerulus, the 
filtration unit of the kidney, comprises 3 specialized cell types; the podocyte and the glomerular endothelial cell 
(GEC), which are separated by a glomerular basement membrane (GBM), along with the mesangial cell, all 
of which contribute to glomerular function (3, 4). Intercellular communication and proper interaction with the 
GBM are key to maintaining the integrity of the filtration apparatus. Even small disturbances in gene expres-
sion, like, for example, changes in VEGF or hypoxia-inducible factor-1 expression, can lead to the development 
of various glomerulopathies (4, 5).

Different transcriptomic platforms, including bulk RNA-Seq (6, 7), single-cell RNA-Seq (scRNA-Seq) 
(8), and single-nucleus RNA-Seq (snRNA-Seq) (9), have allowed characterization of  kidney cell subtypes and 
helped uncover new molecular pathways responsible for disease progression, but the relation between these 
transcriptional data and their spatial localization within the kidney is still unclear. Without this context, inter-
actions between cells and their localization in different tissue compartments can only be inferred or validated 
with low-throughput imaging assays. Spatially resolved whole-genome analysis, which encompasses the com-
bination of  traditional high-throughput quantitative transcriptomics and high-resolution tissue imaging, by 
contrast, can be used to correlate specific tissue structures with changes in gene expression, providing spatial 
transcriptomic maps, leading to an unbiased characterization of  tissue niches and cellular compartments (10).

Here, we used digital spatial profiling (DSP) to describe the glomerular transcriptomic signatures 
that may characterize the complex molecular mechanisms underlying progressive kidney disease in 
Alport syndrome, focal segmental glomerulosclerosis, and membranous nephropathy. Our results 
revealed significant transcriptional heterogeneity among diseased glomeruli, and this analysis 
showed that histologically similar glomeruli manifested different transcriptional profiles. Using 
glomerular pathology scores to establish an axis of progression, we identified molecular pathways 
with progressively decreased expression in response to increasing pathology scores, including signal 
recognition particle–dependent cotranslational protein targeting to membrane and selenocysteine 
synthesis pathways. We also identified a distinct signature of upregulated and downregulated 
genes common to all the diseases investigated when compared with nondiseased tissue from 
nephrectomies. These analyses using DSP at the single-glomerulus level could help to increase 
insight into the pathophysiology of kidney disease and possibly the identification of biomarkers of 
disease progression in glomerulopathies.



2

R E S E A R C H  A R T I C L E

JCI Insight 2024;9(6):e165515  https://doi.org/10.1172/jci.insight.165515

In this study, using the whole-transcriptome GeoMx digital spatial profiling (DSP) platform (11), we 
assessed the spatially resolved transcriptome changes in human kidney glomeruli derived from biopsies 
from patients affected by 1 of  3 glomerular diseases: Alport syndrome (AS), focal segmental glomerulo-
sclerosis (FSGS), and membranous nephropathy (MN); we used glomeruli from specimens of  nondiseased 
kidneys for comparison. AS is a monogenic kidney disease caused by mutations in COL4A3, COL4A4, or 
COL4A5 genes, resulting in impairment of  the GBM due to the failure to assemble normal ColIVα3α4α5 
trimers (12–14). FSGS describes a pathological condition found in various kidney diseases, marked by ini-
tial segmental scarring of  the glomerular tuft (15–17). MN is an immunologically mediated disease caused 
by the deposition of  immune complexes within the filtration barrier, leading to inflammation and podocyte 
damage (18, 19). Despite these quite different etiologies, these kidney diseases all cause glomerular scarring 
and loss of  podocytes and, in many cases, progress to kidney failure.

In this work, to reveal common pathways that drive pathological processes common to all 3 diseas-
es, we compared the sequencing data for each glomerulus to its corresponding pathology score by linear 
regression analysis (20) and correlated increasing pathology scores to a specific set of  genes with increasing 
or decreasing expression. Next, to determine the transcriptional distances between glomeruli and character-
ize disease progression, we used SLICER trajectory analysis (21), without relying on the pathology scores 
as an unbiased approach, followed by a postanalysis comparison of  trajectories with pathology scores. We 
also performed a correlation analysis using established glomerular cell–specific markers to identify a panel 
of  genes that positively correlated with one or more of  the podocyte genes (NPHS1, NPHS2, WT1) or with 
GEC genes (EHD3, CDH5, TEK) or with mesangial cell genes (PDGFRB, GATA3, CD44). Our analysis also 
identified a transcriptional signature comprising genes involved in pathways, such as signal recognition par-
ticle–dependent (SRP-dependent) cotranslational protein targeting to membrane and selenocysteine syn-
thesis, as well as genes such as ADAMTS13, GJA5, and CCDN1 present in all diseased glomeruli, regardless 
of  disease type or the extent of  pathology.

Defining transcriptional programs at the single-glomerulus level is a powerful way of  gaining insight 
into the pathophysiology of  kidney disease, with the potential for clarifying biological processes key to 
understanding mechanisms of  progression that have been largely unexplored due to the limitations of  other 
gene profiling techniques, in addition to allowing the identification of  genes and pathways that could rep-
resent promising targets for new CKD therapeutic strategies.

Results
Tissue histopathology and quality control assessment of  DSP RNA detection. Glomeruli in all the biopsies 
(Table 1) were blindly scored by a kidney pathologist and compared with glomeruli (n = 24) from 
age-matched nondiseased tissue sections derived from partial nephrectomy specimens. Histopathol-
ogy revealed variability in the diseased glomeruli, with some defined as normal and others showing 
various degrees of  abnormality (Figure 1). To perform the GeoMx DSP Whole Transcriptome Assay 
(WTA), we followed the workflow established by Nanostring (Figure 2A), and we manually selected 
the regions of  interest (ROIs) and the glomeruli, guided by immunofluorescence markers CD3, SMA, 
Ki67, and Syto83; these markers visibly allowed the identification of  the different renal cells/struc-
tures (Figure 2B) by the NanoString GeoMx Digital Spatial Profiler. We also selected ROIs that identi-
fied tubules that were used as a quality control in our analysis to establish transcriptomic signatures of  
glomeruli compared with tubules, thus confirming validity of  our selection. Following selection of  75 
glomerular and 31 tubular ROIs, we performed RNA-Seq to explore compartment-specific transcrip-
tional programs. Of  note, we analyzed by DSP all the glomeruli in the diseased biopsies except those 
that did not contain enough cells for sequencing and, therefore, could not pass the quality control. We 
also analyzed histologically normal glomeruli selected arbitrarily in specimens from the nondiseased 
tissue (see Methods for selection criteria).

Consistent expression of genes above the limit of quantification (LOQ) was observed in many glomerular 
ROIs. For 50% of segments, 23.7% of the panel or 3,465 genes were detected above LOQ (Figure 2C). The 
sequencing saturation ranged between 75% and 95%, ensuring adequate assay sensitivity (Figure 2D), and 
the signal dynamic range was satisfactory (Figure 2E). Based on robust Mahalanobis distance (rMd) test, 2 
glomerular and 2 tubular ROIs were eliminated from downstream analysis, as described in Methods (Supple-
mental Figure 1, A–C; supplemental material available online with this article; https://doi.org/10.1172/jci.
insight.165515DS1); all the glomerular ROI analyzed by DSP are represented in Supplemental Figure 2.
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To confirm specificity of  our ROI selection method, we compared the transcriptional program 
between the glomerular and tubular ROIs across all samples. Glomerulus-specific genes, including 
PODXL, SYNPO, and EHD3, were expressed in higher abundance in glomerular ROIs; conversely, genes 
typical of  the tubule segments of  the nephron, including HPN, CDH16, and TMEM37, were highly 
enriched in tubular ROIs (Figure 3A). The transcriptional programs of  glomeruli and tubules showed 
distinct clustering by hierarchical clustering analysis (Figure 3B) and separated clearly in principle com-
ponent analysis (PCA; Figure 3C). Many genes highly expressed in glomeruli were mostly not detected 
in the tubules and vice versa (Figure 3D). We identified 2,664 genes that were differentially expressed 
(DE) between glomerular and tubule ROIs. Genes upregulated in the glomeruli were highly enriched in 
Gene Ontology (GO) terms and Kyoto Encyclopedia of  Genes and Genomes (KEGG) pathways asso-
ciated with cytoskeleton, cellular adhesion, and extracellular matrix (ECM); in contrast genes upregu-
lated in tubules were most highly enriched in metabolic processes, including glycolysis and mitochon-
drial β-oxidation (Figure 3E, P adjusted < 0.05; see Methods and Supplemental Data Set 1).

Cell deconvolution analysis of  glomerular ROI displayed high abundance of  glomerulus-specific cell 
types (such as podocytes and GECs) and immune cells, but no cells specific to other regions of  the neph-
ron (Figure 3F). No major deviations in cell abundances were detected between diseased and nondiseased 
glomeruli. Deconvolution analysis of  the tubule ROI similarly showed high abundance for tubule-specific 
cell types, but no glomerular cells (Figure 3G). Since our main interest is glomerular damage, we focused 
our subsequent analysis specifically on glomeruli.

Pattern of  gene expression in AS, FSGS, and MN glomeruli. We first analyzed all patients with CKD (young 
and adult patients with AS as well as patients with FSGS and MN) by PCA, which partitioned the glomer-
uli into distinct disease-specific clusters, except for the patient with PLA2R+ MN (no. 7), whose glomeruli 
clustered with the nondiseased glomeruli (Supplemental Figure 3). Of  note, despite the low pathology 
scores of  the PLA2R+ glomeruli, the similarity in gene expression between these glomeruli and glomeruli 
of  the nondiseased patients was unexpected (see Discussion for more information).

The top 10% of  genes driving the PC1 and PC3 separations included genes associated with cellular 
translation, selenocysteine synthesis, L13a-mediated translational silencing of  ceruloplasmin expression, 

Table 1. General and kidney-specific patient data

Sample ID CKD subtype Age Sex BP (mmHg) BMI Creat. (mg/dL) ProtU (g/24 h) Additional information Medications
1 Alport 9 M 110/70 25 0.4 0.7 Family history of CKD; alteration of 

the GBM structure associated with 
AS at TM

RAASi

2 Alport 9 F 122/84 26 0.6 0.2 Family history of CKD; alteration of 
the GBM structure associated with 

AS at TM

RAASi

3 Alport 25 F 128/72 24 0.7 0.3 Family history of CKD; alteration of 
the GBM structure associated with 

AS at TM

RAASi

4 FSGS 21 M 128/78 21 2.1 8.5 NOS variants of FSGS; effacement 
>80% at TM

Ste; CNI; 
RAASi

5 FSGS 25 F 134/68 23 3.6 18 Collapsing variants of FSGS; 
effacement >80% at TM

Ste; CNI;MMF; 
RAASi

6 MN 21 F 115/75 26 0.8 3.8 PLA2R–; stage 3 RTX; RAASi
7 MN 62 M — — 1.38 25 PLA2R+; stage 3 Cyclosporine; 

RAASi
8 Nondiseased 6 M 132/86 18 0.5 0 Hypertension/renal function <10% 

vs. contralateral kidney
N/A

9 Nondiseased 56 M — — 0.5 0 Non neoplastic kidney; partial 
nephrectomy; urothelial carcinoma

N/A

10 Nondiseased 40’s M — — 0.4 0 Nonneoplastic kidney; partial 
nephrectomy; urothelial carcinoma

N/A

Kidney biopsy specifications and clinical information for patients with AS, FSGS, and MN and corresponding age-matched individuals without diseased. 
Creat., creatinine; TM, transmission microscopy; RAASi, renin-angiotensin-aldosteron system inhibitors; NOS, not otherwise specified; Ste, steroids; CNI, 
calcineurin inhibitors; MMF, mycophenolate mofetil; RTX, rituximab.
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and SRP-dependent cotranslational protein targeting to membrane. Along the PC2 axis, the separation was 
driven by genes most highly associated with vasculogenesis, G protein–coupled receptor signaling pathway, 
integrin binding, and estrogen signaling pathways (Figure 4A and Supplemental Data Set 2).

To find potential commonalities among the different CKDs, we next analyzed only the adult patients 
with CKD to minimize the effect of  age. PCA analysis partitioned the glomeruli of  each disease into specif-
ic clusters, with the glomeruli from the patient with FSGS having the greatest separation from the nondis-
eased glomeruli along the PC1 axis (20.36%), followed by AS no. 3 and MN no. 6 (Figure 4B).

The top 10% of  genes and associated pathways driving the PC1, PC2, and PC3 separation remained 
largely unchanged when compared with the PCA, including all the glomeruli shown in Figure 4A and 
Supplemental Data Set 3. To identify potential genes and/or pathways commonly regulated between 
all the patients with CKD, we compared their differential gene expression profiles (Student’s t test and 
binomial test). As shown in Figure 4C, we identified 42 genes that were commonly upregulated in all 
diseased glomeruli, with TNS1, CCND1, and GJA5 being the most strongly upregulated genes, and 
128 genes that were downregulated with ADAMTS13 and HOXB8 being the most downregulated ones 

Figure 1. Clinical features and histopathology of glomeruli from patients with AS, FSGS, and MN as well as individuals with nondiseased glomeruli. 
(A–D) Representative histology micrographs from serially sectioned kidney biopsies from a 9-year-old patient with AS (no. 1 and 2; A); a 6-year-old patient 
without disease (no. 8; B); a 25-year-old patient with AS (no. 3), 21- and 25-year-old patients with FSGS (no. 4 and 5), 21- and 62-year-old patients with 
MN (no. 6 and 7) (C); and 56-year-old and approximately 40-year-old patients without disease (non-diseased; no. 9 and 10) (original magnification, ×20). 
Select glomeruli (the same glomeruli also analyzed by DSP) were assessed histopathologically. Blown up projections in B and D show higher-magnification 
(original magnification, ×20) images of the tissue sections from where the glomerular ROIs were selected for DSP. (E and F) H&E-stained histology slides 
of biopsy samples from patients with AS (no. 1–3), FSGS (no. 4 and 5), and MN (no. 6 and 7) and samples without disease (no. 8, 9, and 10) were scored by 
a kidney pathologist in a blinded manner. Dot plots depicting the glomerular pathology scores in kidney biopsies from AS (no. 1 and 2) and nondiseased 
control glomeruli (no. 8) (E), and patients with AS (no. 3), FSGS (no. 4 and 5), and MN (no. 7, 6) and nondiseased glomeruli (F). *P < 0.05; **P < 0.01; ****P 
< 0.0001. Data are shown as the mean ± SD.
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Figure 2. GeoMx digital spatial profiling platform workflow, selection of glomerular and tubular ROI, and quality control assessment. (A) Schematic 
illustration of the Nanostring GeoMx Digital Spatial Profiler workflow for interrogating multiple RNA analytes from a single paraffin-embedded tissue 
section. Analytes in the tissue section are conjugated with oligo tags via photocleavable linker, and glomerular ROIs are defined with the aid of morpholo-
gy markers. Spatially mapped UV illumination allows oligo tags to be released from the analyte into a 96-well plate. The collected oligos are then subject 
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(Supplemental Figure 4, A and B, and Supplemental Data Set 4). Changes in these genes’ expression 
in the glomerular region by DSP (Figure 4D) was also confirmed immunohistochemically (Figure 4E).

We next evaluated whether some of  the top DE genes with the highest levels of  expression identified 
in all the glomeruli using DSP were also represented in patients from the NEPTUNE CKD cohort (FSGS, 
MN, and minimal change disease [MCD]; Supplemental Figure 5A). We confirmed that GJA5, TNS1, and 
CCND1 were also significantly upregulated in the NEPTUNE cohort (Supplemental Figure 5B).

We also analyzed and compared AS and FSGS biopsies independently of  MN biopsies (Supplemental 
Figure 6, A and B, and Supplemental Data Set 5), biopsies from adults with AS against those from young 
individuals with AS (Supplemental Figure 6, C and D), and each adult disease separately (Supplemental 
Figures 7–9), the results of  which are discussed in the Supplemental Results.

Associations between histopathology and transcriptional signature in AS, FSGS, and MN glomeruli. To con-
struct a possible whole-glomerulus progression “pseudotime” representation of  gene expression changes, 
indicating increasing degrees of  glomerular injury, we performed a trajectory analysis of  diseased and non-
diseased glomeruli. This is analogous to the developmental pseudotime trajectory analysis that can be con-
ducted on scRNA-Seq data, except for the transcriptional distances being calculated on a whole-glomerulus 
rather than cellular level.

When all adult glomeruli were combined into a single trajectory, two separate paths emerged. Com-
pared with the nondiseased glomeruli, the AS (no. 3) glomeruli diverged with respect to the first and 
second manifold dimensions, while the FSGS (no. 4 and 5) glomeruli diverged only with respect to 
second manifold dimension, with little to no variation with respect to the first dimension, while MN 
no. 6 presented a trajectory path trending between AS no. 3 and the nondiseased glomeruli (Figure 
5A). The nondiseased glomeruli and MN no. 7 were positioned in a very narrow range with respect to 
both dimensions; thus, in the overall combined trajectory analysis, the 2 manifold dimensions appear to 
both represent pathological dimensions, suggesting that the pathological processes driving progression 
in the disease subtypes diverge (Figure 5A). In addition, when the young glomeruli were combined with 
the adult glomeruli, the trajectory diverged with respect to the first manifold dimension separating the 
normal controls of  the young and adult patients, suggesting that this dimension represents at least in 
part developmental processes. In contrast, all the diseased glomeruli (with the exception of  MN no. 7) 
combined into a single trajectory path (Figure 5B).

We also analyzed each disease separately (Supplemental Figure 10). We recognized that the sample 
size for each individual disease is limited; nevertheless, these data are a proof  of  principle of  the use trajec-
tory analysis in the context of  glomerular data for specific diseases. Each case, regardless of  disease type 
or age, resolved into a single trajectory without branching (Supplemental Figure 10, A–D), suggesting that 
on a whole-glomerulus-level transcriptional changes can be seen as following a “uniform transcriptional 
path” as the disease progresses over time. Nondiseased glomeruli (both young and adult) were highly con-
stant with respect to the second manifold dimension (except in MN, where a slight variation was noticed 
in a seeming overlap and continuation of  the normal glomerulus trajectory, Supplemental Figure 10D), 
suggesting that this axis represents the pathological processes in AS (Supplemental Figure 10, A and B) and 
FSGS (Supplemental Figure 10C), since the nondiseased glomeruli did not participate on this dimension, 
while the first dimension, over which nondiseased glomeruli showed substantial variation, likely represents 
normal glomerular physiological variation. The diseased glomeruli clearly varied in both dimensions. Our 
analysis revealed that some diseased glomeruli (such as glomeruli no. 4, 6, and 7 in patient with AS no. 
2; glomeruli no. 2, 3, and 4 in patient with FSGS no. 5, and glomeruli no. 4 in patient with MN no. 6; 
Supplemental Figure 10, A–D) with greater distances from the nondiseased glomeruli along the trajectory 
path (thus considered trending toward progressive damage) had a pathological score of  0. This observation 
suggests that histopathological assessment might not be able to clearly distinguish between transcriptionally 
normal and/or mildly damaged glomeruli.

to sequencing to obtain digital counts per ROI. (B) Select scans of glomerular and tubular ROI representative of AS (no. 1–3), FSGS (no. 4 and 5), and MN 
(no. 6 and 7) were immunostained for smooth muscle actin (SMA, green), Syto83 (nucleic acid stain, blue), CD3 (T cell marker, yellow), and Ki67 (marker 
of cellular proliferation, red) to guide the selection of ROIs. Individual glomeruli and tubules in the DSP were manually defined as individual geometric 
segments, with sizes ranging from 9,700 to 168,000 mm2. Scale bar: 100 μm. (C) Histogram showing the percentage of genes detected above LOQ relative 
to the percentage of glomerular segments analyzed. The number of genes detected per percentage of segments is depicted on top of each bar. (D) Dot 
plot depicting sequencing saturation (ranging between 75% and 95%) calculated over the areas of the glomerular ROIs. A, adult; Y, young. (E) Heatmap of 
TMM-normalized counts of transcripts, depicting the dynamic range of gene expression between glomerular and tubular ROI across all biopsies.
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Figure 3. Gene expression and cell deconvolution analysis of glomerular and tubular ROIs. (A) Box plots of normalized intensities for PODXL, 
SYNPO, and EDH3 (glomeruli-specific genes) as well as HPN, CDH16, and TMEM37 (tubule-specific genes). Each dot represents either a glomerular 
(orange) or tubular (blue) ROI. Binomial GLM adjusted P values are indicated in red. (B) Dendrogram showing hierarchical clustering and transcrip-
tional link between glomeruli (all samples) and tubules (all samples). A, adult; Y, young. (C). Unsupervised principal component analysis based on 
label-free quantification of the transcripts expressed in glomerular versus tubular ROIs in all kidney tissue segments analyzed based on principal 
components (PC1, PC2, PC3) constructed to capture the most variation in the samples. Percentage of total variance is indicated after each princi-
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Next, despite the significant transcriptional variation evident among glomeruli with pathology scores 
of  0, we used pathology scores over the entire range as an alternative index of  progression. We then per-
formed linear regression analysis of  the pathology scores and transcript abundances to identify genes and 
signaling pathways that correlated the most with these scores.

When analyzed together, glomeruli from patients with AS, FSGS, and MN showed a decreasing trend 
of  expression of  genes highly enriched for SRP-dependent cotranslational protein targeting to membrane, 
selenocysteine synthesis, and regulation of  expression of  SLITs and ROBOs, among others (Figure 5C and 
Supplemental Data Set 6).

Gene correlation analysis identified patterns of  gene expression specific to glomerular cell types. Since inter-
pretation of  spatial transcriptomics at the whole-glomerulus level is limited by the fact that transcript 
quantity is a function of  both the level of  net transcription (as with single-cell methods) and the num-
ber of  the cells producing the transcript in the glomerulus, we reasoned that gene-specific transcripts 
that correlated strongly with several presumed constitutive glomerular cell–type markers would more 
likely reflect changes in the level of  transcription rather than cell number. Therefore, we selected a set 
of  genes recognized to be specific to glomerular cells: WT1, NPHS1, and NPHS2 for podocytes; EHD3, 
TEK, and CDH5 for GECs; PDGFRβ, CD44, and GATA3 for mesangial cells (22); then we performed 
correlation analysis (using a r +0.5 and r –0.5 as a cut-off  for meaningful correlation or anticorrelation 
for all the biopsies combined, young and adult) to detect cell type–specific signatures of  gene changes. 
A complete list of  all correlated and anticorrelated genes can be found in Supplemental Data Set 7. 
We identified 4 transcripts, PODXL, CLIC5, HTRA1, and TGFBR3, that correlated with the 3 podocyte 
markers (Table 2). While PODXL is known to be another specific podocyte marker, we believe that its 
correlation with NPHS2 in multiple glomerular diseases is new. Even if  S100A6 is expressed in other 
cell types (23), we also determined that it correlated very highly and very specifically with NPHS2 only. 
We identified 3 transcripts, IGFBP5, SLC9A3R2, and ENG that correlated with all 3 of  the GEC mark-
ers (Table 3). We did not find any transcripts that would correlate with all 3 of  the mesangial markers, 
PDGFRB, CD44, and GATA3, but we identified PTPN12 and CCND1 as correlating with PDGFRB and 
GATA3 (Table 4).

Gene expression and transcriptional programs in young AS glomeruli. Taking into account the age differences 
among patients, we decided to investigate the gene expression in the glomeruli (n = 16) from 2 young patients 
with AS (no. 1 and 2) separately from that of  the adults. The 8 glomeruli in the AS patient no. 1 shared 676 
genes in common. The 8 glomeruli in AS patient no. 2 shared 588 genes in common. These genes were 
enriched for pathways related to regulation of  ceruloplasmin, selenocysteine expression, SRP-dependent 
cotranslational protein targeting to membrane, and SLITs/ROBOs (Figure 6A and Supplemental Data Set 8).

When glomeruli within the same biopsy were compared, we identified specific “individual” transcrip-
tomic signatures for each of  the glomeruli. These glomeruli expressed unique clusters of  genes and enrich-
ment patterns, and the number of  these genes varied across different glomeruli. The molecular signature for 
each glomerulus can be found in Supplemental Data Set 8.

To reveal the transcriptional signature of  AS glomeruli, we compared their expression data against that 
of  age-matched controls (n = 12 glomeruli, biopsy no. 8; Figure 1A) derived from a nondiseased section of  
a resected kidney from a 6-year-old patient. PCA (Figure 6B) as well as hierarchical clustering analysis (Fig-
ure 6C) separated AS glomeruli and nondiseased glomeruli cleanly. Enrichment analysis performed on the 
top 10% of  genes contributing to PC1 and PC2 revealed that the biological functions driving the separation 
between the AS and nondiseased glomeruli included cytoplasmic translation, focal adhesion, selenocyste-
ine synthesis, and SRP-dependent protein trafficking in PC1 and organization and interactions of  ECM in 
PC2 that separated AS no. 2 moderately from the nondiseased glomeruli. No significant separation of  AS 
no. 1 from the nondiseased glomeruli was present (Figure 6B and Supplemental Data Set 9).

pal component. (D) Heatmap depicting the transcripts significantly modulated between glomerular and tubular ROIs in all kidney tissue segments 
analyzed (Student’s t test; binomial GLM test, Benjamini-Hochberg-adjusted [BH-adjusted] P < 0.05). Transcripts less than LOQ in value are shown 
in white. (E) Volcano plot representing the results of the Student t test (BH-adjusted P < 0.05) comparison of differential gene expression between 
glomerular and tubular ROIs in all the biopsies. A select list of GO terms and KEGG pathways significantly enriched (EASE-modified Fisher’s exact, P 
< 0.05) for genes upregulated in both glomeruli and tubules (Student’s t test and binomial test) is depicted on each side of the volcano plot. (F and 
G) Cell deconvolution analysis showing the abundance of cell types in glomerular ROIs (n = 73, F) and tubular ROIs (n = 29, G) from AS (no. 1–3), FSGS 
(no. 4 and 5), and MN (no. 7, 6) biopsies and their corresponding nondiseased controls, based on publicly available single-cell RNA-Seq experiments 
compiled into profile matrices by aggregating gene-wise counts of all annotated cell types (61).
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Figure 4. Comparison of transcriptional programs among AS, FSGS, and MN glomeruli. (A) Unsupervised principal component analysis (PCA) based on 
label-free quantification of the transcripts expressed in all glomeruli, based on PC1, PC2, and PC3. Percentage of total variance is indicated on each PC axis. 
Significantly enriched GO terms and KEGG and REACTOME pathways (EASE-modified Fisher’s exact P < 0.05) are listed for the top 10% of transcripts con-
tributing the most to each principal component. (B) Unsupervised PCA based on label-free quantification of the transcripts expressed in adult glomeruli, 
based on principal components (PC1, PC2, PC3). Percentage of total variance is indicated after each principal component. A list of significantly enriched 
GO terms and KEGG and REACTOME pathways (EASE-modified Fisher’s exact P < 0.05) is provided for the top 10% of transcripts contributing the most 
to each principal component. (C) Venn diagrams showing the total number of differentially upregulated and downregulated genes (Student’s t test and 
binomial GLM test BH-adjusted P < 0.05) in AS (no. 3), FSGS (no. 4 and 5), and MN (no. 6 and 7) glomeruli as well as nondiseased glomeruli (no. 9 and10). 
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Using binomial test and Student’s t test, we identified that the expression of  3,205 genes was altered 
(adjusted P < 0.05) in the glomeruli based on their origin (AS no. 1 and 2 and nondiseased, Figure 6D). 
Among the top genes commonly overexpressed were IL4I1, LRP11, MELTF, and TXN2; and underexpressed 
genes included ADAMTS13, PRMT8, ZNF468, HOXB8, and APOL3 (Figure 6D). Of note, none of  the over-
expressed transcripts in the young AS no. 1 and 2 were found to be differentially regulated in the adult AS 
no. 3 glomeruli; however, the same underexpressed transcripts were downregulated also in the adult AS no. 
3 glomeruli. Some of  these differences may be due to age differences between the young and adult samples 
or alternatively based on the different nondiseased kidney used as reference. Enrichment analysis of  DE 
genes revealed that genes upregulated in the AS glomeruli were enriched for GO terms associated with ECM 
organization, collagen biosynthesis and degradation, and cell adhesion. The downregulated genes were 
enriched for GO terms associated with regulation of  cellular transcription, DNA methylation, signaling by 
NOTCH, and selencysteine synthesis (Figure 6E and Supplemental Data Set 10).

Discussion
Transcriptomic technologies, including bulk RNA-Seq, scRNA-Seq (24, 25), and snRNA-Seq methods 
(26), have allowed in-depth characterization of  kidney cell subtypes and their biological roles in health 
and disease (27), but they cannot connect the transcriptional data to its spatial location within the kidney 
(28). This is particularly important in the context of  kidney disease, in which different regions of  the 
kidney can show significant heterogeneity in the extent of  injury. Disease heterogeneity can occur across 
various glomeruli or tubules due to differences in progression of  the basic mechanisms or to local effects 
of  fibrosis, such as glomeruli near fibrotic tubules that may be affected by inflammatory tubule products, 
independent of  their own injuries.

Here, using a variety of  computational methods, and after establishment of  stringent quality control 
parameters, we present the application of  DSP technology on the GeoMx platform to study the spatial glo-
merular transcriptional signatures in kidney biopsies from patients with AS, FSGS, and MN. We decided 
to focus on the glomerulus because damage to this structure is one of  the major causes of  progressive CKD 
that often leads to kidney failure (1, 2, 29). Our goal was to establish a proof  of  principle that DSP could 
provide valuable spatial information on glomerular gene expression across different types of  glomerular 
diseases. With the use of  this technology, we also aimed to elucidate a transcriptional signature that may 
identify common pathways of  progression of  the diseases we studied.

We have previously shown that the DSP approach can accurately detect glomerulus-specific and 
tubule-specific gene expression signature in a kidney graft biopsy from a patient with a chronic/active 
T cell–mediated rejection episode and nondiseased kidney control biopsies (30). In the current study, in 
addition to using tubule regions as an internal control, we performed cell deconvolution analysis, which 
further confirmed that our selection method (identification of  glomerular or tubular ROI) accurately 
detects nephron segment-specific transcriptional profiles, thus allowing us to compare the transcriptional 
data of  a single glomerulus to its histopathology and to study interglomerular (in the same biopsies) or 
interindividual (between different biopsies) heterogeneity in glomerular gene expression.

We acknowledge that we did not sequence glomeruli that had very few cells, as these were much small-
er in size and, thus, were beyond the level of  sensitivity of  the DSP assay; these glomeruli also tend to 
be mostly acellular, with high fibrosis, and would therefore probably be transcriptionally uninformative. 
Therefore, based on our selection criteria, the selected AS, FSGS, and MN glomeruli that we studied prob-
ably predominantly represent the earlier-to-intermediate stages of  disease progression. Here, we used a 
limited number of  biopsies per disease category owing to limited availability of  samples. Nevertheless, we 
analyzed 73 glomeruli in total, which can be considered enough biological replicates as a pilot analysis 
using this technology applied to these specific glomerular diseases. We also recognize that control glom-
eruli may have undergone transcriptional changes due to nonpathological processes. However, evidence 

Significantly enriched GO terms and KEGG and REACTOME pathways (EASE-modified Fisher’s exact P < 0.05) for the genes commonly upregulated (n = 
42 genes) and commonly downregulated (n = 128 genes) in all the samples are depicted next to the Venn diagrams. (D) Box plots depicting the Z-scores 
for CCND1, GJA5, and ADAMTS13, commonly upregulated or downregulated, in all diseased glomeruli versus nondiseased (no. 9 and 10) control glomeruli 
(Student’s t test). **P < 0.01; ***P < 0.001; ****P < 0.0001. Data are shown as the mean ± SD. (E) Representative immunofluorescence images of CCND1 
(yellow), GJA5 (green), and ADAMTS13 (red) on kidney sections derived from AS, FSGS, and MN and nondiseased kidney tissue. Nuclei are stained blue with 
DAPI. Dotted lines indicate the glomerular ROIs to distinguish staining in the glomerulus versus tubules. Scale bars: 50 mm.
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that the glomeruli we selected in the age-matched nondiseased tissue that was used as a control had low 
variability of  gene expression increases our confidence in our data interpretation.

An ability of  the DSP technology to quantitate transcript levels in defined glomerular regions is a pow-
erful approach to studying disease heterogeneity. Our analysis identified specific genes and pathways that 
were enriched in the glomeruli of  each patient (Supplemental Results). However, these individual results 
cannot be generalized due to the limited sample size for each disease; therefore, we found it more informa-
tive to pool all the samples together to highlight findings that were common among the glomerular diseases. 
All the glomeruli except those from PLA2R+ MN patient no. 7, clustered differently from the nondiseased 
glomeruli and showed alterations of  common pathways that are known to be altered in AS (ECM remod-
eling, integrin mediated signaling; refs. 12, 31–34), in FSGS (ECM organization, TGF-β receptor signaling; 
refs. 35, 36), and in MN (inflammatory response and MAPK pathway, ref. 37). The PLA2R+ MN showed 
a transcriptional signature very similar to that of  the nondiseased glomeruli. We have no clear explanation 
for why this is the case, although it is possible that the causative effect of  an autoantibody leads to a more 
limited mechanistic injury to only a single cell type in the glomerulus or possibly even small changes at the 

Figure 5. Regression and trajectory analysis. (A and B) Mapping of gene expression perturbation data to the inferred 
trajectories by SLICER from a combined analysis of adult AS (no. 3, orange), FSGS (no. 4 and 5, pink), and MN (no. 6 and 
7, green) glomeruli and their corresponding nondiseased glomeruli (no. 9 and 10; A), and combined analysis of adult AS 
(no. 3, orange), young AS (no. 1 and 2, gray-green), FSGS (no. 4 and 5, pink), and MN (no. 6 and 7, green) glomeruli and 
their corresponding nondiseased glomeruli (no. 8, 9, and 10; B). The numbers of the glomerular ROIs are depicted next 
to each data point. The dotted lines represent fitting curves that indicate the relationship between different glomeruli 
on the trajectory path. (C) Pathology scores as an index of progression regression analysis were applied to identify 
genes and pathways most highly associated with pathological changes in glomeruli across all the biopsies (no. 1–10). 
The heatmap shows the linear increasing or decreasing trend (likelihood trend fitting P < 0.05). Significantly enriched 
GO terms and KEGG and REACTOME pathways (EASE-modified Fisher’s exact P < 0.05) are depicted on the right of the 
heatmap. A, adult (sample ID no. 3–7 and no. 9 and 10); Y, young (sample ID no. 1, 2, and 8).
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transcriptional level that we detected (Supplemental Figure 9C) might still be able to produce a biological 
effect on the development of  the disease. For example, despite the limited differences between PLA2R+ MN 
and nondiseased control glomeruli, we still found significant transcriptional regulation of  CCND1, GJA5, 
and ADAMTS13 (Supplemental Figure 11 and Supplemental Data Set 16). We also found enrichment in 
biological processes and pathways associated with vasculogenesis and integrin-mediated signaling (Supple-
mental Data Set 16).

Our DSP analysis identified a transcriptional signature driving the separation between the non-
diseased controls and all the biopsies from patients with AS (young and adult), FSGS, and MN, inde-
pendently of  their age, etiology, or pathological scores. One of  them, SRP-dependent cotranslational 
protein targeting to membrane signaling, which plays an important regulatory role in protein-folding 
homeostasis (38), was consistently downregulated in all diseased glomeruli. Accumulation of  misfold-
ed proteins in the endoplasmic reticulum (ER), which leads ER stress, has been described in experi-
mental models of  proteinuric kidney disease as well as in human kidney biopsies, including AS (39, 
40), FSGS, and MN (41). In podocytes and mesangial cells, ER stress can be induced by various 
factors, including oxidative stress, changes in cellular lipid concentrations, or genetic mutations (42, 
43). In response, the ER activates quality control mechanisms, including the unfolded protein response 
pathway, to counterbalance the effects of  ER stress (44). Therefore, consistent with previous reports, 

Table 2. Podocyte markers

Genes Podocyte markers (Pearson’s correlation coefficient)
NPHS1 NPHS2 WT1

PODXL 0.8284 0.8380 0.7486
ITGA3 0.7401 0.8374 —
CLIC5 0.8521 0.7979 0.7305
HTRA1 0.8139 0.7700 0.7093
SPOCK2 0.7784 0.7616 —
VEGFA 0.8353 0.7583 —
TGFBR3 0.7392 0.7312 0.7043
PLA2R1 0.8546 0.7273 —
S100A6 — 0.9134 —

Comparison of the most important positive gene correlation results across AS (no. 1–3), FSGS (no. 4 and 5), and MN (no. 6 and 7) for podocyte genes NPHS1, 
NPHS2, and WT1.

Table 3. GEC markers

Genes GEC markers (Pearson’s correlation coefficient)
EHD3 TEK CDH5

EHD3 1 — 0.5355
KDR 0.8805 — —
PLPP3 0.8563 — 0.5181
EMCN 0.8558 — —
IGFBP5 0.8163 0.5897 0.5493
GJA5 0.7746 — —
PLA2R1 0.7678 — —
TGFBR2 0.7581 0.5533 —
B2M — — —
HLA_E — 0.5491 —

SLC9A3R2 0.7451 0.5117 0.5009
ENG 0.7392 0.5053 0.5596

Comparison of the most important positive gene correlation results across AS (no. 1–3), FSGS (no. 4 and 5), and MN (no. 6 and7) for glomerular endothelial 
cell genes EHD3, TEK, and CDH5.
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our data suggest that protein misfolding and ER stress might be important common progression factors 
in different glomerulopathies. Another common pathway we found, also downregulated in all glom-
eruli, was associated with selenium metabolism. This is consistent with recent reports demonstrating 
that patients with acute kidney injury or CKD are frequently found to have low serum selenium levels 
(45). Selenium is known to influence antioxidant mechanisms (46, 47), thus suggesting that its defi-
ciency could potentially impede the kidney’s ability to effectively cope with oxidative stress. We also 
identified transcriptional programs related to angiogenesis and focal adhesion to be upregulated in AS, 
FSGS, and MN. This is consistent with findings from many reports demonstrating the involvement of  
an imbalance of  angiogenesis-linked mediators (such as VEGF-A) in the progression of  CKD (48, 49). 
Focal adhesions, involving integrins, play an important role in podocyte foot process structure, and 
numerous studies (50, 51) have suggested that targeting these dynamic structures has the potential to 
improve treatments for CKD.

DSP identified 128 specific downregulated genes and 42 specific upregulated genes common to 
glomeruli from all the adult diseased biopsies, 87 of  which were also DE (adjusted P < 0.05) in the 
young AS glomeruli (expression in all diseases was also validated histochemically). Importantly, we 
confirmed that 3 genes GJA5, TNS1, and CCND1 were also significantly upregulated in the NEPTUNE 
cohort (Supplemental Figure 5). For example, it is known that CCND1 plays an important role in 
cell cycle entry (G1/S transition) and cell proliferation/migration. It has been reported that CCND1 
is upregulated in podocytes in idiopathic collapsing glomerulopathy (52), and in other glomerular 
cells and diseases (52, 53), but additional experiments will be required to identify the specific cell type 
responsible for this upregulation. Even if  the role of  GJA5, TNS1, and CCND1 in glomerular disease 
requires further investigation (beyond the scope of  this work), they might represent a biomarker signa-
ture of  progressive glomerular damage, independent of  the etiology. Of  note, even if  not all the genes 
were significantly upregulated or downregulated, the directionality of  gene regulation was retained 
across most genes that we have investigated. This difference is not surprising, given that the references 
used in these analyses like biopsies from partial nephrectomies and biopsies from living donors might be 
different; here, we did not have access to biopsies from living donors, and our patient cohort had differ-
ences in disease etiology; for example, we did not investigate MCD, and AS data were not available in 
the NEPTUNE Cohort. Nevertheless, we think that identification of  3 common upregulated genes and 
a trend in DE are sufficient to support validation of  our method.

Furthermore, using trajectory analysis, we showed that glomeruli can be placed along whole-glomeru-
lus pseudotime trajectories. Analogous to developmental pseudotime, as often represented in scRNA-Seq 
analyses (54), the location of  the nondiseased glomeruli in the trajectory plot suggests that the diseased 
glomeruli may represent different points in a pathological progression timeline. It is of  interest that our 

 Table 4. Mesangial markers

Genes GEC markers (Pearson’s correlation coefficient)
PDGFRB CD44 GATA3

CALML3 — 0.7026 —
IL36RN — 0.6970 —
C4orf46 — 0.6937 —
ZNF587 — 0.6902 —
ZNF814 — 0.6736 —
BMERB1 — 0.6698 —
ZNF28 — 0.6569 —
HTR2A — 0.6536 —
SRSF6 — — —
PDGFRB — — 0.6503
GATA3 0.6503 — 1
PTPN12 0.5360 — 0.5640
CCND1 0.5471 — 0.5138

Comparison of the most important positive gene correlation results across AS (no. 1–3), FSGS (no. 4 and 5), and MN (no. 6 and 7) for mesangial cell genes 
PDGFRB, CD44, and GATA3.
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Figure 6. Gene expression signature in AS glomeruli from young patients. (A) Venn diagrams of TMM-normalized expression of genes detected above 
LOQ in biopsies from young patients with AS (sample no. 1, n = 8 ROIs; sample no. 2, n = 7 ROIs), showing the distribution of the number of genes 
commonly expressed in all glomeruli (AS no. 1, 676 genes; AS no. 2, 588 genes). The black lines point to a list of the most highly enriched pathways (GO, 
KEGG, REACTOME) for the commonly expressed genes among all glomeruli in AS no. 1 and 2. (B) Unsupervised principal component analysis (PCA) based 
on label-free quantification of the transcripts expressed in young AS (no. 1 and 2, gray-green circles) and young nondiseased glomerular ROIs (no. 8, blue 
circles), based on PC1 and PC2 constructed to capture the most variation in the samples. Percentage of total variance is indicated after each principal 
component. Significantly enriched GO terms and KEGG and REACTOME pathways (EASE-modified Fisher’s exact P < 0.05) for the top 10% of transcripts 
contributing the most to each principal component are shown next to the plot. (C) Dendrogram showing hierarchical clustering and transcriptional link 
between glomeruli from AS no. 1 and 2 and nondiseased glomeruli no. 8. Y, young. (D) Heatmap depicting the transcripts significantly modulated between 
glomeruli from AS (no.1 and 2) and nondiseased glomeruli no. 8 (Student’s t test and binomial GLM test, adjusted P < 0.05). Transcripts less than LOQ in 
value are shown in white. (E) A select list of GO terms and KEGG and REACTOME pathways significantly enriched (EASE-modified Fisher exact, P < 0.05) 
for the upregulated and downregulated genes in AS (no. 1 and 2) versus nondiseased (no. 8) shown in D.
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glomerular histology assessment did not completely capture the heterogeneity of  diseased glomeruli, with 
most of  the glomeruli looking histologically unremarkable, despite showing clear signs of  a transcription-
al trajectory, thus allowing us to conclude that histological evaluation may not be sufficient to evaluate 
pathological events occurring at the transcriptional level. It is possible that trajectory analysis of  relatively 
uninjured glomeruli can give insight into the earliest aspects of  pathologically relevant changes that will 
eventuate in irreversible structural damage, perhaps at a stage when appropriate therapies could return the 
glomeruli to normal physiology.

In addition, our gene correlation analysis showed how gene expression programs in podocytes and 
glomerular endothelial and mesangial cells relate to one another in these diseases. It was unexpected to 
find that little to no correlation was present among the major podocyte markers WT1, NPHS1, and NPHS2. 
However, all of  these podocyte markers consistently correlated with PODXL. In addition, our analysis 
found strong correlation between NPHS2 and S100A6 (r = 0.9134), suggesting that S100A6 maybe a good 
candidate as an alternative marker for assessing podocyte loss and damage in diverse glomerular patholo-
gies. Additionally, correlation data between GJA5 (one of  the common signature genes upregulated in our 
biopsies and in the NEPTUNE Cohort) and EHD3 (GEC-specific marker) and our immunohistochemistry 
data suggest GJA5 as a potential new marker for GEC.

Overall, our data have shown that, despite of  its limitations regarding sequencing depth, DSP 
is a very useful platform for generating transcriptional maps of  kidney glomerular and tubule struc-
tures. With good sample preparation and strong analytical approaches, DSP can be a powerful tool to 
study compartment specific transcriptional programs in the kidney. Indeed, our analysis showed that 
a whole-glomerulus analog to pseudotime development trajectories in single cells exists that seems 
to describe an analogous pathological trajectory on the glomerular level. Further studies of  these 
networks are warranted to uncover pathways or genes that might be targeted at early disease stages to 
prevent progression in a variety of  glomerular disorders.

Methods
Sex as a biological variable. Our study examined kidney biopsies from male (n = 6) and female (n = 4) individ-
uals with AS, FSGS, and MN and individuals without disease acting as controls. All samples were pooled 
together for analysis, and sex was not considered as a biological variable.

Biopsy procurement. For the NanoString GeoMx DSP analysis and for the fluorescence in situ hybridiza-
tion, paraffinized kidney biopsy samples from individuals with AS, FSGS, and MN and individuals without 
disease acting as controls were obtained from the pathology biorepository at Mount Sinai Hospital, New 
York, New York, USA, and IRCCS Istituto Giannina Gaslini. Patient information is reported in Table 1.

Additional AS biopsy specimens used for histology were obtained from University of  Utah Health-Pa-
thology Department, and archived biopsy samples were included in this study. These biopsies were previ-
ously procured for medical reasons and not as part of  a study.

Histopathology. Serially cut 3 mm thick sections of  formalin-fixed and paraffin-embedded kidney sam-
ples from patients with AS, FSGS, and MN (and nondiseased kidney samples) were processed for H&E 
staining to assess kidney morphology. Briefly, slides were deparaffinized in Citrisolv, and H&E staining was 
performed using Selectech reagent system on a Leica BOND-RX. Images were captured on a Zeiss Axio 
Scan Z1 slide imager. Slides were evaluated for glomerular pathology scores by a kidney pathologist. 24 
nondiseased glomeruli were used as a reference. For the pathological scoring, a glomerular injury score was 
given to each glomerular cross-section, based on 7 criteria: glomerular size area, GBM thickness, mesangial 
expansion, mesangial hypercellularity, intracapillary hypercellularity, FSGS, and global glomerular sclero-
sis. Each criterion was assigned 1 for the presence and/or change of  the criterion or 0 for its absence/no 
change; the total possible injury score ranged from 0 to 7.

Immunostaining for ROI identification. Serially prepared sections (previously hybridized with WTA 
probes) were also immunostained with CD3, Ki-67, ɑ-smooth muscle actin, and SYTO83 to help with ROI 
selection. Briefly, Morphology Marker Solution was prepared in the following proportions per slide: 22 μL 
SYTO (Thermo Fisher Scientific, catalog S11364), 5.5 μL ɑ-Smooth Muscle Actin (NanoString Technol-
ogies), 5.5 μL CD3 (NanoString Technologies), 5.5 μL Ki-67 (NanoString Technologies), and 181.5 μL 
Buffer W for a total volume of  220 μL/slide. Slides were incubated in this solution at room temperature 
for 1 hour followed by 2 successive SSC washes, after which, the slides were loaded into the NanoString 
GeoMx Digital Spatial Profiler, where overview scans were captured at ×20 to guide the selection of  ROIs.
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Glomerular ROI selection criteria. Glomerular ROIs were arbitrarily selected in all biopsies, guided by 
the morphology markers as described above. In the diseased biopsies, glomeruli that lacked enough cell 
numbers and, therefore, genetic material for quality data output, could not be selected for downstream 
DSP analysis. In the nondiseased control samples, we arbitrarily selected those glomeruli that histologically 
appeared unremarkable and were not adjacent to any tubular or interstitial lesions.

Sample processing for NanoString GeoMx DSP and quality control analysis. Slides were prepared for hybrid-
ization following a modified RNA FFPE BOND RX Slide Preparation Protocol in the GeoMx NGS Slide 
Preparation User Manual (NanoString Technologies, MAN-10115). We acknowledge that biopsy tissue was 
not available for RIN or DV200 analysis, and this represents a limitation in our study design. Briefly, depar-
affinization, antigen retrieval, and proteinase K digestion were performed on a Leica BOND-RX instrument 
with Bond Dewax Solution, Bond Epitope Retrieval Solution 2, and 1 mg/mL proteinase K digest at 37°C. 
Human WTA probes (NanoString Technologies, catalog 121401102) were hybridized at 4 nM each in Buffer 
R (Nanostring Technologies) and incubated in a hybridization chamber for 16 hours at 37°C. Two washes in 
50% Formamide/2x SSC (Thermo Fisher, catalog AM9342/MilliporeSigma, catalog S6639) at 37°C washed 
nonspecifically bound probes from the slides, which were then blocked prior to antibody staining with 200 μL 
Buffer W (Nanostring).

After the staining, DSP operators defined individual tubules and glomeruli in the DSP software as 
individual geometric segments, with sizes ranging from 9,700 to 168,000 μL, guided by markers and H&E 
staining (Leica Biosystems, catalog 3801571 and 3801616) (see Glomerular ROI selection criteria). The WTA 
probe tags were selectively UV-cleaved and gathered from each of  these ROIs and transferred to individual 
wells of  a collection plate on the DSP. Library preparation was performed according to the GeoMx-NGS 
Readout Library Prep User Manual (NanoString Technologies, MAN-10117). The collection plates were 
dried down and resuspended in 10 μL nuclease-free water to ensure uniform volume. 4 μL of  this tag 
suspension was added to a PCR plate and amplified as per the protocol. PCR products were pooled and 
purified by 2 rounds of  AMPure XP beads (Beckman Coulter, catalog A63882), with the quality of  the 
resulting library assessed by a Bioanalyzer DNA High Sensitivity assay (Agilent, catalog 5067-4626). The 
library was sequenced on an Illumina NextSeq 1000/2000, after which the GeoMx NGS Pipeline v1.0.0 
(NanoString) processed fastq files, tabulating raw counts for each gene and ROI.

We used an outlier detection test to eliminate certain ROIs from subsequent analysis. We performed 
our outlier detection based on a rMd, with a P value threshold of  0.0001. This distance was computed using 
the correlation coefficient; the fraction of  the data missing; the median absolute deviation of  transcripts, 
which is a robust measure of  the spread of  the data; the skewness, which is a measure of  data symmetry of  
the data symmetry; and the kurtosis, which measures “heavy-tailedness.” The calculation of  the rMd was 
performed using the package pMartR v2.0 as previously described (55, 56).

Data visualization matrices and analysis methodology. Venn diagrams in Figure 6A; Supplemental Figure 
7A; Supplemental Figure 8, A and B; and Supplemental Figure 9, A and B, were realized using “DiVenn” 
(57). For these select Venn diagrams, the functional enrichment analysis for GO terms, KEGG, and Reac-
tome pathways was performed using g:Profiler (version e105_eg52_p16_e84549f) with g:SCS multiple test-
ing correction method applying significance threshold of  0.05 (58). All primary analysis is reported in 
Supplemental Data Sets 1–16.

Our data were also compared with the NEPTUNE cohort glomerular transcriptomic signature of  
patients with FSGS, MN, and MCD and patients with living donors (Supplemental Figure 5A). Briefly, 
bulk RNA-Seq was performed in microdissected glomeruli, data were normalized, and DE was calculated 
using Limma and Limma-Voom.

Deconvolution analysis for glomerular and tubular cell types. Cell deconvolution was performed using the 
SpatialDecon package in R (NanoString, https://github.com/Nanostring-Biostats/SpatialDecon.git; com-
mit ID 94fe087) with sample-wise counts and the Adult Kidney_HCA cell profile (https://github.com/
Nanostring-Biostats/CellProfileLibrary.git; commit ID 6b0fd2c) as inputs. Publicly available scRNA-Seq 
experiments were compiled into profile matrices by aggregating gene-wise counts of  all annotated cell 
types. The spatialdecon function estimated abundances of  each cell type within each ROI by comparing its 
gene expression to each cell-specific gene expression pattern of  the profile matrix.

Immunohistochemistry. Thin deparaffinized kidney sections (5 μm), representative of  AS, FSGS, and 
MN and corresponding nondiseased controls, were deparaffinized followed by antigen retrieval. Slides 
were subsequently blocked in 3% BSA and immunostained against GJ5A (Abcam, ab213688), CCND1 
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(Thermo Fisher Scientific, 595-MSM1-P1ABX), and ADAMTS13 (Thermo Fisher Scientific, PA5-103577) 
at a concentration of  1 μg/μL, with an overnight incubation at 4°C, followed by AF555-conjugated second-
ary antibody at a 1:100 dilution; they were mounted with DAPI to visualize nuclei. Images were captured 
with a Leica DM RA fluorescent microscope in conjunction with Open Lab 3.1.5 software.

Statistics. Data processing was performed in R v4.2.1. The RNA count of  the negative probes was 
used to evaluate the LOQ. In brief  the median and SD of  the negative probe counts were calculated, and 
we defined the LOQ to be 3 SDs above the median of  the negative probe counts. RNA counts below this 
threshold were converted in missing values. Then, the count data were normalized using the trimmed 
mean of  M values (TMM) method with the package EdgeR (v3.40.2). Statistical analysis and figures were 
generated using the package RomicsProcessor v1.0.0, which is available on Github (https://github.com/
PNNL-Comp-Mass-Spec/RomicsProcessor/commit/72d35c987900febc3e6c6ed416d4d72dc5820075) 
(59). The large data set was subsided to perform statistics and comparisons among different groups. PCA 
and hierarchical clustering were performed to verify the grouping of  the sample within each subset. Two-
tailed heteroscedastic Student’s t tests were performed when at least 50% of  the samples from each group 
to be compared were available. To statistically evaluate if  the difference between presence and absence of  
quantitative value between 2 groups was significant, we used binomial GLM tests. For each test performed, 
the P value frequency was plotted to ensure that the P value threshold was selected appropriately. The P 
value filter employed was the Benjamini-Hochberg-adjusted P < 0.05 for both t tests and binomial GLM. 
One-way ANOVA was applied for multiple comparisons. The linear model of  the normalized transcript 
abundances as the dependent variable was fit to the pathological scores (model equation, yi = β0 + β1 × 
xi + ϵi, where x and y represent the log-transformed normalized transcript abundance and the log-trans-
formed pathological score [plus 1, to avoid 0 values], respectively; i represents the region of  interest; β0 is 
the ordinate at origin; β1 is the slope; and ϵ the error of  estimation). Likelihood ratios tests were conducted 
to identify the proteins with evidence of  significant linear trends with pathological score. Venn diagrams 
were realized using the package “ggvenn” v0.1.9. Pearson’s correlations were used to identify RNA with 
abundances positively or negatively correlated to the abundance of  transcripts of  genes known to partici-
pate in glomerular diseases. Trajectory analyses were performed using SLICER v0.2.0 (https://cran.r-proj-
ect.org/src/contrib/Archive/SLICER/). Enrichment analyses were performed using the homemade 
package Protein_Minion v0.2.0 (https://github.com/GeremyClair/Protein_MiniOn/commit/76d14a-
475f5107287ac8b1f09ac37d461a7fa94b) and the EASE score (DAVID’s modified Fisher’s exact tests; ref. 
60) on GO terms and KEGG (https://www.genome.jp/kegg/) and Reactome (https://reactome.org) path-
ways harvested from Uniprot (https://www.uniprot.org, accessed January 30, 2022). The code to perform 
the analysis was also uploaded on Github to make the data analysis reproducible (https://github.com/Ger-
emyClair/The_spatially_resolved_transcriptome_signatures_of_glomeruli_in_chronic_kidney_disease/
commit/75ad58604abd0c59140280f9bc1df98f93431582).
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